A motif-based probabilistic approach for community detection in complex networks

Author:

Hajibabaei Hossein,Seydi Vahid,Koochari Abbas

Abstract

AbstractCommunity detection in complex networks is an important task for discovering hidden information in network analysis. Neighborhood density between nodes is one of the fundamental indicators of community presence in the network. A community with a high edge density will have correlations between nodes that extend beyond their immediate neighbors, denoted by motifs. Motifs are repetitive patterns of edges observed with high frequency in the network. We proposed the PCDMS method (Probabilistic Community Detection with Motif Structure) that detects communities by estimating the triangular motif in the network. This study employs structural density between nodes, a key concept in graph analysis. The proposed model has the advantage of using a probabilistic generative model that calculates the latent parameters of the probabilistic model and determines the community based on the likelihood of triangular motifs. The relationship between observing two pairs of nodes in multiple communities leads to an increasing likelihood estimation of the existence of a motif structure between them. The output of the proposed model is the intensity of each node in the communities. The efficiency and validity of the proposed method are evaluated through experimental work on both synthetic and real-world networks; the findings will show that the community identified by the proposed method is more accurate and dense than other algorithms with modularity, NMI, and F1score evaluation metrics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3