Enhancing anomaly detectors with LatentOut

Author:

Angiulli Fabrizio,Fassetti Fabio,Ferragina Luca

Abstract

Abstract$${{\textbf{Latent}}\varvec{Out}}$$ Latent Out is a recently introduced algorithm for unsupervised anomaly detection which enhances latent space-based neural methods, namely (Variational) Autoencoders, GANomaly and ANOGan architectures. The main idea behind it is to exploit both the latent space and the baseline score of these architectures in order to provide a refined anomaly score performing density estimation in the augmented latent-space/baseline-score feature space. In this paper we investigate the performance of $${{\textbf{Latent}}\varvec{Out}}$$ Latent Out acting as a one-class classifier and we experiment the combination of $${{\textbf{Latent}}\varvec{Out}}$$ Latent Out with GAAL architectures, a novel type of Generative Adversarial Networks for unsupervised anomaly detection. Moreover, we show that the feature space induced by $${{\textbf{Latent}}\varvec{Out}}$$ Latent Out has the characteristic to enhance the separation between normal and anomalous data. Indeed, we prove that standard data mining outlier detection methods perform better when applied on this novel augmented latent space rather than on the original data space.

Funder

Università della Calabria

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Reference44 articles.

1. Aggarwal, C.C. (2013). Outlier analysis

2. Akcay, S., Atapour-Abarghouei, A., & Breckon, T.P. (2018). GANomaly: Semi-supervised anomaly detection via adversarial training

3. An, J., & Cho, S. (2015) Variational autoencoder based anomaly detection using reconstruction probability. Technical Report 3, SNU Data Mining Center

4. Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in large high-dimensional data sets. In: Proc int conf on principles of data mining and knowledge discovery (PKDD), pp. 15–26

5. Angiulli, F., Basta, S., & Pizzuti, C. (2006). Distance-based detection and prediction of outliers. IEEE Trans on Knowledge and Data Engineering, 2(18), 145–160.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on intelligent systems;Journal of Intelligent Information Systems;2024-07-30

2. Data Mining: Outleir Detection;Reference Module in Life Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3