TROMPA-MER: an open dataset for personalized music emotion recognition

Author:

Gómez-Cañón Juan Sebastián,Gutiérrez-Páez Nicolás,Porcaro Lorenzo,Porter Alastair,Cano Estefanía,Herrera-Boyer Perfecto,Gkiokas Aggelos,Santos Patricia,Hernández-Leo Davinia,Karreman Casper,Gómez Emilia

Abstract

AbstractWe present a platform and a dataset to help research on Music Emotion Recognition (MER). We developed the Music Enthusiasts platform aiming to improve the gathering and analysis of the so-called “ground truth” needed as input to MER systems. Firstly, our platform involves engaging participants using citizen science strategies and generate music emotion annotations – the platform presents didactic information and musical recommendations as incentivization, and collects data regarding demographics, mood, and language from each participant. Participants annotated each music excerpt with single free-text emotion words (in native language), distinct forced-choice emotion categories, preference, and familiarity. Additionally, participants stated the reasons for each annotation – including those distinctive of emotion perception and emotion induction. Secondly, our dataset was created for personalized MER and contains information from 181 participants, 4721 annotations, and 1161 music excerpts. To showcase the use of the dataset, we present a methodology for personalization of MER models based on active learning. The experiments show evidence that using the judgment of the crowd as prior knowledge for active learning allows for more effective personalization of MER systems for this particular dataset. Our dataset is publicly available and we invite researchers to use it for testing MER systems.

Funder

Universitat Pompeu Fabra

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3