1. Agrawal, R., Lin, K.-I., Sawhney, H. S., & Shim, K. (1995). Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In VLDB, Zurich, Switzerland pp. 490–501.
2. Ankerst, M., Breunig, M., Kriegel, H. -P., & Sander, J. (1999). Optics: Ordering points to identify the clustering structure. In Proceedings of ACM SIGMOD international conference on management of data (SIGMOD’99) Philadelphia, Pennsylvania. New York: ACM.
3. Chomicki, J., & Revesz, P. (1999). Constraint-based interoperability of spatiotemporal databases, GeoInformatica, 3(3), 211–243.
4. Chudova, D., Gaffney, S., Mjolsness, E., & Smyth, P. (2003). Translation-invariant mixture models for curve clustering. In Proceedings of ACM SIGKDD KDD ’03, Washington, District of Columbia (pp. 79–88). New York: ACM.
5. Ciaccia, P., Patella, M., & Zezula, P. (1997). M-tree: An efficient access method for similarity search in metric spaces. In VLDB’97, Athens, Greece (pp. 426–435). San Francisco, California: Morgan Kaufmann.