1. Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Reading, MA: Addison-Wesley.
2. Afrati, F. N., Gionis, A., & Mannila H. (2004). Approximating a collection of frequent sets. In W. Kim, R. Kohavi, J. Gehrke, & W. DuMouchel (Eds.), International conference on knowledge discovery and data mining (KDD’04) (pp. 2–19). Washington, USA: ACM.
3. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), International conference on very large data bases (VLDB’94) (pp. 487–499). Santiago de Chile, Chile: Morgan Kaufmann.
4. Albrecht, M., Buchholz, E., Düsterhöft, A., & Thalheim, B. (1995). An informal and efficient approach for obtaining semantic constraints using sample data and natural language processing. In L. Libkin & B. Thalheim (Eds.), Semantics in databases (Vol. 1358, pp. 1–28). Lecture Notes in Computer Science, Springer.
5. Bauckmann, J., Leser, U., Naumann, F., & Tietz, V. (2007). Efficiently detecting inclusion dependencies. In International conference on data engineering (ICDE’07) (pp. 1448–1450). IEEE Computer Society.