Audio-based anomaly detection on edge devices via self-supervision and spectral analysis

Author:

Lo Scudo Fabrizio,Ritacco Ettore,Caroprese Luciano,Manco Giuseppe

Abstract

AbstractIn real-world applications, audio surveillance is often performed by large models that can detect many types of anomalies. However, typical approaches are based on centralized solutions characterized by significant issues related to privacy and data transport costs. In addition, the large size of these models prevented a shift to contexts with limited resources, such as edge devices computing. In this work we propose conv-SPAD, a method for convolutional SPectral audio-based Anomaly Detection that takes advantage of common tools for spectral analysis and a simple autoencoder to learn the underlying condition of normality of real scenarios. Using audio data collected from real scenarios and artificially corrupted with anomalous sound events, we test the ability of the proposed model to learn normal conditions and detect anomalous events. It shows performances in line with larger models, often outperforming them. Moreover, the model’s small size makes it usable in contexts with limited resources, such as edge devices hardware.

Funder

Università della Calabria

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3