Robust recommendation method based on suspicious users measurement and multidimensional trust
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software
Link
http://link.springer.com/content/pdf/10.1007/s10844-015-0375-2.pdf
Reference26 articles.
1. Aghili, G., Shajari, M., Khadivi, S., & Morid, M.A. (2011). Using genre interest of users to detect profile injection attacks in movie recommender systems. In Proceedings of the 10th international conference on Machine Learning and Applications and Workshops (pp. 49–52).
2. Burke, R., Mobasher, B., Williams, C., & Bhaumik, R. (2006). Classification features for attack detection in collaborative recommender systems. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 542–547).
3. Cheng, Z., & Hurley, N. (2010). Robust collaborative recommendation by least trimmed squares matrix factorization. In Proceedings of the 22nd IEEE international conference on tools with artificial intelligence (pp. 105–112).
4. Dyer, R.F. (1992). Group decision support with the analytic hierarchy process. Decision Support Systems, 8(2), 99–124.
5. Gunes, I., Kaleli, C., Bilge, A., & Polat, H. (2014). Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 42(4), 767–799.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of a dynamic and robust recommender system based on item context, trust, rating matrix and rating time using social networks analysis;Journal of King Saud University - Computer and Information Sciences;2024-02
2. A top-N Recommendation Approach Based on Reliable Users;Emerging Trends in Intelligent and Interactive Systems and Applications;2020-12-18
3. A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection;KSII Transactions on Internet and Information Systems;2019-09-30
4. L 2, 1‐Norm Regularized Matrix Completion for Attack Detection in Collaborative Filtering Recommender Systems;Chinese Journal of Electronics;2019-09
5. Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks;Expert Systems with Applications;2019-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3