Pathways to success: a machine learning approach to predicting investor dynamics in equity and lending crowdfunding campaigns

Author:

Porro Rosa,Ercole Thomas,Pipitò Giuseppe,Vessio Gennaro,Loglisci Corrado

Abstract

AbstractCrowdfunding has evolved into a formidable mechanism for collective financing, challenging traditional funding sources such as bank loans, venture capital, and private equity with its global reach and versatile applications across various sectors. This paper explores the complex dynamics of crowdfunding platforms, particularly focusing on investor behaviour and investment patterns within equity and lending campaigns in Italy. By leveraging advanced machine learning techniques, including XGBoost and LSTM networks, we develop predictive models that dynamically analyze real-time and historical data to accurately forecast the success or failure of crowdfunding campaigns. To address the existing gaps in crowdfunding analysis tools, we introduce two novel datasets—one for equity crowdfunding and another for lending. Moreover, our approach extends beyond traditional binary success metrics, proposing novel measures. The insights gained from this study could support crowdfunding strategies, significantly improving project selection and promotional tactics on platforms. By enhancing decision-making processes and providing forward-looking guidance to investors, our computational model aims to empower both campaign creators and platform administrators, ultimately improving the overall efficacy and sustainability of crowdfunding as a financing tool.

Funder

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3