Leveraging colour-based pseudo-labels to supervise saliency detection in hyperspectral image datasets

Author:

Appice AnnalisaORCID,Cannarile Angelo,Falini AntonellaORCID,Malerba DonatoORCID,Mazzia FrancescaORCID,Tamborrino Cristiano

Abstract

AbstractSaliency detection mimics the natural visual attention mechanism that identifies an imagery region to be salient when it attracts visual attention more than the background. This image analysis task covers many important applications in several fields such as military science, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite hundreds of models have been proposed for saliency detection in colour images, there is still a large room for improving saliency detection performances in hyperspectral imaging analysis. In the present study, an ensemble learning methodology for saliency detection in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded through a robust colour-based technique with new saliency information extracted by taking advantage of the abundance of spectral information on multiple hyperspectral images. The experiments performed with the proposed methodology provide encouraging results, also compared to several competitors.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

ministero dell’istruzione, dell’università e della ricerca

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Reference57 articles.

1. Appice, A., Guccione, P., Acciaro, E., & Malerba, D. (2020). Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification. Applied Intelligence, 50(10), 3179–3200. https://doi.org/10.1007/s10489-020-01701-8.

2. Appice, A., Guccione, P., & Malerba, D. (2016). Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system. Machine Learning, 103 (3), 343–375. https://doi.org/10.1007/s10994-016-5559-7.

3. Appice, A., Guccione, P., & Malerba, D. (2017). A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data. Pattern Recognition, 63, 229–245. https://doi.org/10.1016/j.patcog.2016.10.010.

4. Appice, A., Lomuscio, F., Falini, A., Tamborrino, C., Mazzia, F., & Malerba, D. (2020). Saliency detection in hyperspectral images using autoencoder-based data reconstruction. In D. Helic, G. Leitner, M. Stettinger, A. Felfernig, & Z.W. Ras (Eds.) Foundations of intelligent systems - 25th international symposium, ISMIS 2020, Graz, Austria, September 23-25, 2020, Proceedings, Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-59491-6_15, (Vol. 12117 pp. 161–170). Springer.

5. Appice, A., & Malerba, D. (2019). Segmentation-aided classification of hyperspectral data using spatial dependency of spectral bands. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 215–231. https://doi.org/10.1016/j.isprsjprs.2018.11.023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3