Author:
Ghaderi Zefrehi Hossein,Altınçay Hakan
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software
Reference62 articles.
1. Abdi, L., & Hashemi, S. (2016). To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Transactions on Knowledge and Data Engineering, 28(1), 238–251. https://doi.org/10.1109/TKDE.2015.2458858.
2. Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2011). KEEL Data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17, 255–287.
3. Barua, S., Islam, M. M., Yao, X., & Murase, K. (2014). MWMOTE–Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering, 26(2), 405–425. https://doi.org/10.1109/TKDE.2012.232.
4. Błaszczyński, J., & Stefanowski, J. (2015). Neighbourhood sampling in bagging for imbalanced data. Neurocomputing, 150, 529–542. https://doi.org/10.1016/j.neucom.2014.07.064.
5. Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl, 6(1), 20–29. https://doi.org/10.1145/1007730.1007735.