Abstract
AbstractIt is proven that the only incompressible Euler fluid flows with fixed straight streamlines are those generated by the normal lines to a round sphere, a circular cylinder or a flat plane, the fluid flow being that of a point source, a line source or a plane source at infinity, respectively. The proof uses the local differential geometry of oriented line congruences to integrate the Euler equations explicitly.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics