Abstract
AbstractWe consider the Navier–Stokes equation for an incompressible viscous fluid on a square, satisfying Navier boundary conditions and being subjected to a time-independent force. As the kinematic viscosity is varied, a branch of stationary solutions is shown to undergo a Hopf bifurcation, where a periodic cycle branches from the stationary solution. Our proof is constructive and uses computer-assisted estimates.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics
Reference35 articles.
1. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Math.-Phys. Kl. Siichs. Akad. Wiss. Leipzig 94, 3–22 (1942)
2. Serrin, J.: A note on the existence of periodic solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 3, 120–122 (1959)
3. Serrin, J.: Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik, 125–263. Springer, Berlin (1959)
4. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
5. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1995)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献