Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics
Reference29 articles.
1. Bernier, C.: Existence of attractor for the quasi-geostrophic approximation of the Navier–Stokes equations and estimate of its dimension. Adv. Math. Sci. Appl. 4(2), 465–489 (1994)
2. Breckner, H.: Approximation and optimal control of the stochastic Navier-Stokes equation. Mathematisch Naturwissenschaftlich Technischen Fakultät der Martin Luther Universität Halle Wittenberg, Diss (1999)
3. Breckner, H.: Galerkin approximation and the strong solution of the Navier–Stokes equation. J. Appl. Math. Stoch. Anal. 13(3), 239–259 (2000)
4. Carigi, G.: Ergodic properties and response theory for a stochastic two-layer model of geophysical fluid dynamics. PhD thesis, University of Reading, (2021). https://doi.org/10.48683/1926.00102181
5. Carigi, G., Bröcker, J., Kuna, T.: Exponential ergodicity for a stochastic two-layer quasi-geostrophic model. Stoch. Dyn. (2022). https://doi.org/10.1142/S0219493723500119
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 2D Smagorinsky-Type Large Eddy Models as Limits of Stochastic PDEs;Journal of Nonlinear Science;2024-04-12
2. Introduction;SpringerBriefs in Mathematics;2024
3. Stochastic inviscid Leray-α model with transport noise: Convergence rates and CLT;Nonlinear Analysis;2023-09
4. Inviscid limit for stochastic second-grade fluid equations;Stochastics and Partial Differential Equations: Analysis and Computations;2023-06-29
5. LDP and CLT for SPDEs with transport noise;Stochastics and Partial Differential Equations: Analysis and Computations;2023-03-28