Well-Posedness and Stability Results for Some Periodic Muskat Problems

Author:

Matioc Bogdan-Vasile

Abstract

AbstractWe study the two-dimensional Muskat problem in a horizontally periodic setting and for fluids with arbitrary densities and viscosities. We show that in the presence of surface tension effects the Muskat problem is a quasilinear parabolic problem which is well-posed in the Sobolev space $$H^r({\mathbb {S}})$$ H r ( S ) for each $$r\in (2,3)$$ r ( 2 , 3 ) . When neglecting surface tension effects, the Muskat problem is a fully nonlinear evolution equation and of parabolic type in the regime where the Rayleigh–Taylor condition is satisfied. We then establish the well-posedness of the Muskat problem in the open subset of $$H^2({\mathbb {S}})$$ H 2 ( S ) defined by the Rayleigh–Taylor condition. Besides, we identify all equilibrium solutions and study the stability properties of trivial and of small finger-shaped equilibria. Also other qualitative properties of solutions such as parabolic smoothing, blow-up behavior, and criteria for global existence are outlined.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new reformulation of the Muskat problem with surface tension;Journal of Differential Equations;2023-03

2. Steady-state solutions for the Muskat problem;Collectanea Mathematica;2022-03-08

3. Interface dynamics in a two-phase tumor growth model;Interfaces and Free Boundaries;2021-07-16

4. The Muskat problem with surface tension and equal viscosities in subcritical $$L_p$$-Sobolev spaces;Journal of Elliptic and Parabolic Equations;2021-06-29

5. Well-posedness of the Muskat problem in subcritical L p -Sobolev spaces;European Journal of Applied Mathematics;2021-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3