Abstract
AbstractIn the note, a new regularity condition for axisymmetric solutions to the non-stationary 3D Navier–Stokes equations is proven. It is slightly supercritical.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics
Reference31 articles.
1. Albritton, D., Dong, H.: Regularity properties of passive scalars with rough divergence-free drifts, arXiv:2107.12511
2. Caffarelli, L., Kohn, R.-V., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math., Vol. XXXV, pp. 771–831 (1982)
3. Chae, D., Lee, J.: On the regularity of the axisymmetric solutions of the Navier–Stokes equations. Math. Z. 239, 645–671 (2002)
4. Chen, C., Fang, D., Zhang, T.: Regularity of 3D axisymmetric Navier–Stokes equations. Discrete Contin. Dyn. Syst. A 37(4), 1923–1939 (2017)
5. Chen, C., Strain, R.M., Yau, H., Tsai, T.: Lower bounds on the blow-up rate of the axisymmetric Navier–Stokes equations II. Commun. Partial Differ Equ. 34, 203–232 (2009)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献