Funder
Swiss National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics
Reference84 articles.
1. Korteweg, D., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39(240), 422–443 (1895)
2. Crighton, D.: Applications of KdV. In: Hazewinkel, M., Capel, H.W., De Jager, E.M. (eds.) KdV’95. Springer, Berlin (1995)
3. De Jager, E.: On the origin of the Korteweg–de Vries equation. arXiv:math/0602661
4. Ockendon, H., Tayler, A.B.: Inviscid Fluid Flows, vol. 43. Springer, Berlin (2013)
5. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for Solving the Korteweg-de Vries Equation. Phys. Rev. Lett. 19, 1095–1097 (1967)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. KdV breathers on a cnoidal wave background;Journal of Physics A: Mathematical and Theoretical;2023-04-13
2. Topological bifurcations and reconstruction of travelling waves;Physics of Fluids;2021-02
3. Berry phases in the reconstructed KdV equation;Chaos: An Interdisciplinary Journal of Nonlinear Science;2020-11