1. Basson, A.: Solutions spatialement homogénes adaptées au sens de Caffarelli, Kohn et Nirenberg des équations de Navier–Stokes, Thèse, Université d’Évry (2006)
2. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators $${\rm div}$$ and $${\rm grad}$$, Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Trudy Sem. S. L. Soboleva, no. 1, vol. 1980, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980, pp. 5–40, 149
3. Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18(3), 1095–1119 (2017)
4. Bradshaw, Z., Tsai, T.P.: Discretely self-similar solutions to the Navier–Stokes equations with data in $$L_{{\rm loc}}^2$$ satisfying the local energy inequality, Analysis & PDE (to appear)
5. Bradshaw, Z., Tsai, T.P.: Global existence, regularity, and uniqueness of infinite energy solutions to the Navier–Stokes equations. arXiv:1907.00256