Abstract
AbstractWe study the symmetric stochastic p-Stokes system, $$p \in (1,\infty )$$
p
∈
(
1
,
∞
)
, in a bounded domain. The results are two-fold: First, we show that in the context of analytically weak solutions, the stochastic pressure—related to non-divergence free stochastic forces—enjoys almost $$-1/2$$
-
1
/
2
temporal derivatives on a Besov scale. Second, we verify that the velocity u of strong solutions obeys 1/2 temporal derivatives in an exponential Nikolskii space. Moreover, we prove that the non-linear symmetric gradient $$V(\mathbb {\epsilon } u) = (\kappa + \left| \mathbb {\epsilon } u\right| )^{(p-2)/2} \mathbb {\epsilon } u$$
V
(
ϵ
u
)
=
(
κ
+
ϵ
u
)
(
p
-
2
)
/
2
ϵ
u
, $$\kappa \ge 0$$
κ
≥
0
, which measures the ellipticity of the p-Stokes system, has 1/2 temporal derivatives in a Nikolskii space.
Funder
Deutsche Forschungsgemeinschaft
Australian Research Council
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Acerbi, E., Mingione, G.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 25–60 (2004)
2. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)
3. Agresti, A., Veraar, M.: The critical variational setting for stochastic evolution equations. arXiv e-prints, arXiv:2206.00230 (2022) [math.PR]
4. Barrett, J.W., Liu, W.B.: Finite element approximation of the p-Laplacian. Math. Comp. 61(204), 523–537 (1993)
5. Belenki, L., Diening, L., Kreuzer, C.: Optimality of an adaptive finite element method for the p-Laplacian equation. IMA J. Numer. Anal. 32(2), 484–510 (2012). https://doi.org/10.1093/imanum/drr016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献