Abstract
AbstractWe prove the existence of a semiflow selection with range the space of càglàd, i.e. left-continuous and having right-hand limits functions defined on $$[0,\infty )$$
[
0
,
∞
)
and taking values in a Hilbert space. Afterwards, we apply this abstract result to the system arising from a compressible viscous fluid with a barotropic pressure of the type $$a\varrho ^{\gamma }, \gamma \ge 1$$
a
ϱ
γ
,
γ
≥
1
, with a viscous stress tensor being a nonlinear function of the symmetric velocity gradient.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics
Reference25 articles.
1. Abbatiello, A., Feireisl, E.: On a class of generalized solutions to equations describing incompressible viscous fluids. Annali di Matematica Pura e Applicata (1923); 2019
2. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to mathematical models of compressible viscous fluids, arXiv:1912.12896 (2019)
3. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Inventiones Mathematicae 158, 227–260 (2004)
4. Basarić, D.: Semiflow selection for the compressible Navier-Stokes system. J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00578-x
5. Basarić, D.: Vanishing viscosity limit for the compressible Navier–Stokes system via measure—valued solutions, arXiv:1903.05886 (2019)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献