1. A. A. Agrachev, “A second-order necessary condition for optimality in the general nonlinear case,”Mat. Sb.,102, No. 4, 551–568 (1977).
2. A. A. Agrachev, “Quadratic mappings in geometrical control theory,” In:Progress in Science and Technology. Series on Problems of Geometry, Vol. 20. All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1989), pp. 111–205.
3. A. A. Agrachev and S. A. Vakhrameev, “Chronological series and the Cauchy-Kovalevskaya theorem,” In:Progress in Science and Technology. Series on Problems of Geometry, Vol. 12, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1981), pp. 165–189.
4. A. A. Agrachev, S. A. Vakhrameev, and R. V. Gamkrelidze, “Differential-geometric and group-theoretic methods in optimal control theory,” In:Progress in Science and Technology. Series on Problems of Geometry, Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1983), pp. 3–56.
5. A. A. Agrachev and R. V. Gamkrelidze, “The principle of second-order optimality for a time-optimal problem,”Mat. Sb.,100, No. 4, 610–643 (1976).