Apatite evidence for a fluid-saturated, crystal-rich magma reservoir forming the Quellaveco porphyry copper deposit (Southern Peru)

Author:

Nathwani Chetan L.ORCID,Large Simon J. E.,Brugge Emily R.,Wilkinson Jamie J.,Buret Yannick,

Abstract

AbstractLarge volume, intermediate-felsic magma reservoirs are the source of melt and mineralising fluids which generate porphyry copper deposits. Cooling and crystallisation of hydrous magmas drives the exsolution and expulsion of a magmatic volatile phase—a process which remains challenging to constrain in porphyry Cu systems where the record of magma volatile compositions is rarely preserved. Here, we use the halogen compositions of apatite inclusions shielded as inclusions within zircon to constrain volatile evolution in magma reservoirs which pre-date and are synchronous with porphyry Cu mineralisation at Quellaveco, Southern Peru. Geochemical and textural data confirm that the zircon-included apatites escaped re-equilibration with hydrothermal fluids, unlike apatites found in the groundmass of the same rocks. We, therefore, recommend that future studies attempting to reconcile magmatic volatile budgets using apatite in porphyry Cu systems should focus on apatite inclusions in zircon. By combining the apatite inclusion data with numerical modelling, we find evidence that the magma reservoir sourcing porphyry Cu mineralisation remained fluid-saturated for the entire period recorded by apatite crystallisation. By contrast, the pre-mineralisation batholith shows more variable, potentially fluid-undersaturated behaviour. Our modelling suggests that in order to attain the porphyry melt volatile compositions inferred from apatite, the magma reservoir must have exsolved a large proportion of its volatile budget, consistent with having been held at high crystallinity (40–60% crystals). This crystallisation interval coincides with peak chlorine and copper extraction from intermediate-felsic magmas, and would have permitted efficient fluid migration and accumulation at the roof of the system. We suggest that the storage of large-volume, long-lived, crystal-rich magma reservoirs in magmatic arcs may be a critical step in generating world-class porphyry copper deposits.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3