Using the elastic properties of zircon-garnet host-inclusion pairs for thermobarometry of the ultrahigh-pressure Dora-Maira whiteschists: problems and perspectives

Author:

Campomenosi NicolaORCID,Scambelluri Marco,Angel Ross J.,Hermann Joerg,Mazzucchelli Mattia L.,Mihailova Boriana,Piccoli Francesca,Alvaro Matteo

Abstract

AbstractThe ultrahigh-pressure (UHP) whiteschists of the Brossasco-Isasca unit (Dora-Maira Massif, Western Alps) provide a natural laboratory in which to compare results from classical pressure (P)–temperature (T) determinations through thermodynamic modelling with the emerging field of elastic thermobarometry. Phase equilibria and chemical composition of three garnet megablasts coupled with Zr-in-rutile thermometry of inclusions constrain garnet growth within a narrow PT range at 3–3.5 GPa and 675–720 °C. On the other hand, the zircon-in-garnet host-inclusion system combined with Zr-in-rutile thermometry would suggest inclusion entrapment conditions below 1.5 GPa and 650 °C that are inconsistent with the thermodynamic modelling and the occurrence of coesite as inclusion in the garnet rims. The observed distribution of inclusion pressures cannot be explained by either zircon metamictization, or by the presence of fluids in the inclusions. Comparison of the measured inclusion strains with numerical simulations shows that post-entrapment plastic relaxation of garnet from metamorphic peak conditions down to 0.5 GPa and 600–650 °C, on the retrograde path, best explains the measured inclusion pressures and their disagreement with the results of phase equilibria modelling. This study suggests that the zircon-garnet couple is more reliable at relatively low temperatures (< 600 °C), where entrapment conditions are well preserved but chemical equilibration might be sluggish. On the other hand, thermodynamic modelling appears to be better suited for higher temperatures where rock-scale equilibrium can be achieved more easily but the local plasticity of the host-inclusion system might prevent the preservation of the signal of peak metamorphic conditions in the stress state of inclusions. Currently, we cannot define a precise threshold temperature for resetting of inclusion pressures. However, the application of both chemical and elastic thermobarometry allows a more detailed interpretation of metamorphic PT paths.

Funder

H2020 European Research Council

Progetti di Ricerca di Rilevante Interesse Nazionale

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3