The redox dependence of titanium isotope fractionation in synthetic Ti-rich lunar melts

Author:

Rzehak Laura J. A.ORCID,Kommescher Sebastian,Kurzweil Florian,Sprung Peter,Leitzke Felipe P.,Fonseca Raúl O. C.

Abstract

AbstractEquilibria between Ti oxides and silicate melt lead to Ti isotope fractionation in terrestrial samples, with isotopically light Ti oxides and isotopically heavy coexisting melt. However, while Ti is mostly tetravalent in terrestrial samples, around 10% of the overall Ti is trivalent at fO2 relevant to lunar magmatism (~ IW-1). The different valences of Ti in lunar samples, could additionally influence Ti stable isotope fractionation during petrogenesis of lunar basalts to an unknown extent. We performed an experimental approach using gas mixing furnaces to investigate the effect of Ti oxide formation at different fO2 on Ti stable isotope fractionation during mare basalt petrogenesis. Two identical bulk compositions were equilibrated simultaneously during each experiment to guarantee comparability. One experiment was investigated with the EPMA to characterize the petrology of experimental run products, whereas the second experiment was crushed, and fabricated phases (i.e., oxides, silicates and glass) were handpicked, separated and digested. An aliquot of each sample was mixed with a Ti double-spike, before Ti was separated from matrix and interfering elements using a modified HFSE chemistry. Our study shows fO2-dependent fractionation within seven samples from air to IW-1, especially ∆49Tiarmalcolite-melt and ∆49Tiarmalcolite-orthopyroxene become more fractionated from oxidized to reduced conditions (− 0.092 ± 0.028-  − 0.200 ± 0.033 ‰ and  − 0.089 ± 0.027- − 0.250 ± 0.049 ‰, respectively), whereas ∆49Tiorthopyroxene-melt shows only a minor fractionation (− 0.002 ± 0.017-0.050 ± 0.025 ‰). The results of this study show that Ti isotope fractionation during mare basalt petrogenesis is expected to be redox dependent and mineral-melt fractionation as commonly determined for terrestrial fO2 may not be directly applied to a lunar setting. This is important for the evaluation of Ti isotope fractionation resulting from lunar magmatism, which takes place under more reducing conditions compared to the more oxidized terrestrial magmatism.

Funder

Deutsche Forschungsgemeinschaft

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3