Abstract
AbstractThe Loch Bà ring-dyke and the associated Centre 3 granites represent the main events of the final phase of activity at the Palaeogene Mull igneous complex. The Loch Bà ring-dyke is one of the best exposed ring-intrusions in the world and records intense interaction between rhyolitic and basaltic magma. To reconstruct the evolutionary history of the Centre 3 magmas, we present new major- and trace-element, and new Sr isotope data as well as the first Nd and Pb isotope data for the felsic and mafic components of the Loch Bà intrusion and associated Centre 3 granites. We also report new Sr, Nd and Pb isotope data for the various crustal compositions from the region, including Moine and Dalradian metasedimentary rocks, Lewisian gneiss, and Iona Group metasediments. Isotope data for the Loch Bà rhyolite (87Sr/86Sri = 0.716) imply a considerable contribution of local Moine-type metasedimentary crust (87Sr/86Sr = 0.717–0.736), whereas Loch Bà mafic inclusions (87Sr/86Sri = 0.704–0.707) are closer to established mantle values, implying that felsic melts of dominantly crustal origin mixed with newly arriving basalt. The Centre 3 microgranites (87Sr/86Sri = 0.709–0.716), are less intensely affected by crustal assimilation relative to the Loch Bá rhyolite. Pb-isotope data confirm incorporation of Moine metasediments within the Centre 3 granites. Remarkably, the combined Sr–Nd–Pb data indicate that Centre 3 magmas record no detectable interaction with underlying deep Lewisian gneiss basement, in contrast to Centre 1 and 2 lithologies. This implies that Centre 3 magmas ascended through previously depleted or insulated feeding channels into upper-crustal reservoirs where they resided within and interacted with fertile Moine-type upper crust prior to eruption or final emplacement.
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,Geophysics
Reference75 articles.
1. Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582
2. Bailey EB, Clough CT, Wright WB, et al (1924) The Tertiary and post-Tertiary geology of Mull, Loch Aline and Oban. Memoir of the geological survey of Great Britain, Sheet 44 (Scotland), HMSO, Edinburgh, UK.
3. Beckinsale RD, Pankhurst RJ, Skelhorn RR, Walsh JN (1978) Geochemistry and petrogenesis of the early Tertiary lava pile of the Isle of Mull, Scotland. Contrib to Mineral Petrol 66:415–427. https://doi.org/10.1007/BF00403427
4. Bell BR, Emeleus CH (1988) A review of silicic pyroclastic rocks of the British Tertiary Volcanic province. Geol Soc Lond Spec Publ 39:365–379. https://doi.org/10.1144/GSL.SP.1988.039.01.32
5. Blake DH, Elwell RWD, Gibson IL et al (1965) Some relationships resulting from the intimate association of acid and basic magmas. Q J Geol Soc 121:31–49. https://doi.org/10.1144/gsjgs.121.1.0031