Abstract
AbstractDevolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with $${\mathrm{Ca}}_{\mathrm{aq}}^{2+}$$
Ca
aq
2
+
, $${\mathrm{Sr}}_{\mathrm{aq}}^{2+}$$
Sr
aq
2
+
and $${\mathrm{Ba}}_{\mathrm{aq}}^{2+}$$
Ba
aq
2
+
into the dry forearc mantle by performing piston cylinder experiments between 1–2.5 GPa and 600–700 °C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz ± kyanite and zone 2 contains carbonates + talc ± chlorite. Olivine is further replaced in zone 3 by either antigorite + magnesite or magnesite + talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite. Mineral assemblages and the compositions of secondary minerals depend on fluid composition and the replaced primary silicate. The extent of alteration depends on fluid CO2 content and fluid/rock-ratio, and is further promoted by fluid permeable reaction zones and reaction driven cracking. Our results show that COH-fluid induced metasomatism of the forearc mantle is self-perpetuating and efficient at sequestering $${\mathrm{Ca}}_{\mathrm{aq}}^{2+}$$
Ca
aq
2
+
, $${\mathrm{Sr}}_{\mathrm{aq}}^{2+}$$
Sr
aq
2
+
, $${\mathrm{Ba}}_{\mathrm{aq}}^{2+}$$
Ba
aq
2
+
and CO2aq into newly formed carbonates. This process is fast with 90% of the available C sequestered and nearly 50% of the initial minerals altered at 650 °C, 2 GPa within 55 h. The dissolution of primary silicates under high COH-fluid/rock-ratios, as in channelized fluid flow, enriches SiO2aq in the fluid, while CO2aq is sequestered into carbonates. In an open system, the remaining CO2-depleted, Si-enriched aqueous fluid may cause Si-metasomatism in the forearc further away from the injection of the COH-fluid into peridotite.
Funder
Australian Research Centre
Mervyn and Katalin Paterson fellowship
Universität Potsdam
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,Geophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献