Disequilibrium reaction pathways and the twin-mediated growth of tabular forsterite during contact metamorphism of quartz-bearing dolomite

Author:

Acosta Marisa D.ORCID,Baumgartner Lukas P.ORCID

Abstract

AbstractThe forsterite zone of the Ubehebe Peak contact aureole, Death Valley, USA consists of an outer zone of tabular/jack-straw olivine and an inner zone of subequant polyhedral olivine. Subequant polyhedral forsterite crystals close to the intrusion are small and tabular forsterite crystals farther away are larger. To investigate the formation of the two morphologies, forsterite growth experiments were conducted in cold seal pressure vessels in the CaO-MgO-SiO2-CO2-H2O system. Forsterite precipitation follows a disequilibrium reaction pathway made of three reactions: [1] tabular forsterite growth from quartz and dolomite, [2] forsterite growth from tremolite dissolution, and [3] subequant polyhedral forsterite growth from tabular forsterite dissolution. Initially, quartz reacts with dolomite to simultaneously form twinned tabular forsterite and tremolite. As quartz reacts away, forsterite precipitation continues at a slower rate through tremolite dissolution. A second generation of forsterite then precipitates on top of some tabular forsterite but has different habit and tracht. Once all the tremolite reacts away, subequant polyhedral forsterite precipitation continues at an even slower rate through dissolution of tabular forsterite. The tabular morphology of jack-straw olivine is a consequence of twin-mediated unidirectional growth; the abundance of twins being due to rapid nucleation and growth at initially high reaction affinities. Twin junctions are preferential nucleation centers for steps, so faceted growth is enhanced on {100}. This phenomenon is the twin plane re-entrant effect. Subequant polyhedral forsterite in the Ubehebe Peak inner contact aureole recrystallized and ripened from tabular forsterite. In the outer contact aureole, conditions were not conducive to recrystallization and ripening so well-developed tabular forsterite persists.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Lausanne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3