Formation mechanisms of macroscopic globules in andesitic glasses from the Izu–Bonin–Mariana forearc (IODP Expedition 352)

Author:

Fonseca Raúl O. C.ORCID,Michely Lina T.,Kirchenbaur Maria,Prytulak Julie,Ryan Jeffrey,Hauke Kerstin,Leitzke Felipe P.,Almeev Renat R.,Marien Chris S.,Gerdes Axel,Schellhorn Rico

Abstract

AbstractThe Izu–Bonin–Mariana volcanic arc is situated at a convergent plate margin where subduction initiation triggered the formation of MORB-like forearc basalts as a result of decompression melting and near-trench spreading. International Ocean Discovery Program (IODP) Expedition 352 recovered samples within the forearc basalt stratigraphy that contained unusual macroscopic globular textures hosted in andesitic glass (Unit 6, Hole 1440B). It is unclear how these andesites, which are unique in a stratigraphic sequence dominated by forearc basalts, and the globular textures therein may have formed. Here, we present detailed textural evidence, major and trace element analysis, as well as B and Sr isotope compositions, to investigate the genesis of these globular andesites. Samples consist of $$\hbox {K}_2\hbox {O}$$ K 2 O -rich basaltic globules set in a glassy groundmass of andesitic composition. Between these two textural domains a likely hydrated interface of devitrified glass occurs, which, based on textural evidence, seems to be genetically linked to the formation of the globules. The andesitic groundmass is Cl rich (ca. $$3000\, \mu \hbox {g/g}$$ 3000 μ g/g ), whereas globules and the interface are Cl poor (ca. $$300\, \mu \hbox {g/g}$$ 300 μ g/g ). Concentrations of fluid-mobile trace elements also appear to be fractionated in that globules and show enrichments in B, K, Rb, Cs, and Tl, but not in Ba and W relative to the andesitic groundmass, whereas the interface shows depletions in the latter, but is enriched in the former. Interestingly, globules and andesitic groundmass have identical Sr isotopic composition within analytical uncertainty ($$^{87}\hbox {Sr}/^{86}\hbox {Sr}$$ 87 Sr / 86 Sr of $$0.70580 \pm 10$$ 0.70580 ± 10 ), indicating that they likely formed from the same source. However, globules show high $$\delta ^{11}$$ δ 11 B (ca. + 7$$\permille$$ ), whereas their host andesites are isotopically lighter (ca. – 1 $$\permille$$ ), potentially indicating that whatever process led to their formation either introduced heavier B isotopes to the globules, or induced stable isotope fractionation of B between globules and their groundmass. Based on the bulk of the textural information and geochemical data obtained from these samples, we conclude that these andesites likely formed as a result of the assimilation of shallowly altered oceanic crust (AOC) during forearc basaltic magmatism. Assimilation likely introduced radiogenic Sr, as well as heavier B isotopes to comparatively unradiogenic and low $$\delta ^{11}\hbox {B}$$ δ 11 B forearc basalt parental magmas (average $$^{87}\hbox {Sr}/^{86}\hbox {Sr}$$ 87 Sr / 86 Sr of 0.703284). Moreover, the globular textures are consistent with their formation being the result of fluid-melt immiscibility that was potentially induced by the rapid release of water from assimilated AOC whose escape likely formed the interface. If the globular textures present in these samples are indeed the result of fluid-melt immiscibility, then this process led to significant trace element and stable isotope fractionation. The textures and chemical compositions of the globules highlight the need for future experimental studies aimed at investigating the exsolution process with respect to potential trace element and isotopic fractionation in arc magmas that have perhaps not been previously considered.

Funder

Deutsche Forschungsgemeinschaft

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3