Ascent-driven differentiation: a mechanism to keep arc magmas metaluminous?

Author:

Marxer FelixORCID,Ulmer PeterORCID,Müntener OthmarORCID

Abstract

AbstractArc magmatism is fundamental to the generation of new continental or island arc crust. However, the mechanisms that add to the chemical complexity of natural calc-alkaline magmas ranging from basaltic to rhyolitic compositions are debated. Differentiation mechanisms currently discussed include magma mixing, assimilation, crustal melting, or (fractional) crystallisation. In this contribution, the differentiation of arc magmas by decompression-driven crystallisation is investigated. We performed a set of equilibrium crystallisation experiments at variable crustal pressures (200–800 MPa) on a hydrous high-Al basalt (3.5 wt.% of H2O in the starting material) with run temperatures varying from near-liquidus conditions (1110 °C) to 900 °C. Oxygen fugacity was buffered at moderately oxidising conditions close to the NNO equilibrium. Combining these novel experiments with previous polybaric fractional crystallisation experiments (Marxer et al., Contrib Mineral Petrol 177:3, 2022) we demonstrate the effects of pressure on the crystallisation behaviour of calc-alkaline magmas with respect to liquid and cumulate lines of descent, mineral chemistry, and phase proportions. Decompression shifts the olivine-clinopyroxene cotectic curve towards melt compositions with higher normative clinopyroxene and enlarges the stability field of plagioclase. This exerts a key control on the alumina saturation index of residual liquids. We argue that near-adiabatic (or near-isothermal) decompression accompanied by dissolution of clinopyroxene entrained during residual melt extraction in the lower crust keeps arc magmas metaluminous during crystallisation-driven differentiation thereby closely reproducing the compositional spread observed for natural arc rocks.

Funder

ETH Research Grant

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3