How fluid infiltrates dry crustal rocks during progressive eclogitization and shear zone formation: insights from H2O contents in nominally anhydrous minerals

Author:

Kaatz LisaORCID,Reynes Julien,Hermann Jörg,John Timm

Abstract

AbstractGranulites from Holsnøy (Bergen Arcs, Norway) maintained a metastable state until fluid infiltration triggered the kinetically delayed eclogitization. Interconnected hydrous eclogite-facies shear zones are surrounded by unreacted granulites. Macroscopically, the granulite–eclogite interface is sharp and there are no significant compositional changes in the bulk chemistry, indicating the fluid composition was quickly rock buffered. To better understand the link between deformation, fluid influx, and fluid–rock interaction one cm-wide shear zone at incipient eclogitization is studied here. Granulite and eclogite consist of garnet, pyroxene, and plagioclase. These nominally anhydrous minerals (NAMs) can incorporate H2O in the form of OH groups. H2O contents increase from granulite to eclogite, as documented in garnet from ~ 10 to ~ 50 µg/g H2O, pyroxene from ~ 50 to ~ 310 µg/g H2O, and granulitic plagioclase from ~ 10 to ~ 140 µg/g H2O. Bowl-shape profiles are characteristic for garnet and pyroxene with lower H2O contents in grain cores and higher at the rims, which suggest a prograde water influx into the NAMs. Omphacite displays a H2O content range from ~ 150 to 425 µg/g depending on the amount of hydrous phases surrounding the grain. The granulitic plagioclase first separates into a hydrous, more albite-rich plagioclase and isolated clinozoisite before being replaced by new fine-grained phases like clinozoisite, kyanite and quartz during ongoing fluid infiltration. Results indicate a twofold fluid influx with different mechanisms to act simultaneously at different scales and rates. Fast and more pervasive proton diffusion is recorded by NAMs that retain the major element composition of the granulite-facies equilibration where hydrogen decorates pre-existing defects in the crystal lattice and leads to OH increase. Contemporaneously, slower grain boundary-assisted aqueous fluid influx enables element transfer and results in progressive formation of new minerals, e.g., hydrous phases. Both mechanisms lead to bulk H2O increase from ~ 450 to ~ 2500 µg/g H2O towards the shear zone and convert the system from rigid to weak. The incorporation of OH groups reduces the activation energy for creep, promotes formation of smaller grain sizes (phase separation of plagioclase), and synkinematic metamorphic mineral reactions. These processes are part of the transient weakening, which enhance the sensitivity of the rock to deform.

Funder

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Freie Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3