Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts

Author:

Blundy JonORCID,Melekhova Elena,Ziberna Luca,Humphreys Madeleine C. S.,Cerantola Valerio,Brooker Richard A.,McCammon Catherine A.,Pichavant Michel,Ulmer Peter

Abstract

AbstractThe Fe–Mg exchange coefficient between olivine (ol) and melt (m), defined as $${\text{Kd}}_{{{\text{Fe}}^{T} {-} {\text{Mg}}}}$$ Kd Fe T - Mg  = (Feol/Fem)·(Mgm/Mgol), with all FeT expressed as Fe2+, is one of the most widely used parameters in petrology. We explore the effect of redox conditions on $${\text{Kd}}_{{{\text{Fe}}^{T} {-} {\text{Mg}}}}$$ Kd Fe T - Mg using experimental, olivine-saturated basaltic glasses with variable H2O (≤ 7 wt%) over a wide range of fO2 (iron-wüstite buffer to air), pressure (≤ 1.7 GPa), temperature (1025–1425 °C) and melt composition. The ratio of Fe3+ to total Fe (Fe3+/∑Fe), as determined by Fe K-edge µXANES and/or Synchrotron Mössbauer Source (SMS) spectroscopy, lies in the range 0–0.84. Measured Fe3+/∑Fe is consistent (± 0.05) with published algorithms and appears insensitive to dissolved H2O. Combining our new data with published experimental data having measured glass Fe3+/∑Fe, we show that for Fo65–98 olivine in equilibrium with basaltic and basaltic andesite melts, $${\text{Kd}}_{{{\text{Fe}}^{T} {-} {\text{Mg}}}}$$ Kd Fe T - Mg decreases linearly with Fe3+/∑Fe with a slope and intercept of 0.3135 ± 0.0011. After accounting for non-ideal mixing of forsterite and fayalite in olivine, using a symmetrical regular solution model, the slope and intercept become 0.3642 ± 0.0011. This is the value at Fo50 olivine; at higher and lower Fo the value will be reduced by an amount related to olivine non-ideality. Our approach provides a straightforward means to determine Fe3+/∑Fe in olivine-bearing experimental melts, from which fO2 can be calculated. In contrast to $${\text{Kd}}_{{{\text{Fe}}^{T} {-} {\text{Mg}}}}$$ Kd Fe T - Mg , the Mn–Mg exchange coefficient, $${\text{Kd}}_{{{\text{Mn}} {-} {\text{Mg}}}}$$ Kd Mn - Mg , is relatively constant over a wide range of P–T–fO2 conditions. We present an expression for $${\text{Kd}}_{{{\text{Mn}} {-} {\text{Mg}}}}$$ Kd Mn - Mg that incorporates the effects of temperature and olivine composition using the lattice strain model. By applying our experimentally-calibrated expressions for $${\text{Kd}}_{{{\text{Fe}}^{T} {-} {\text{Mg}}}}$$ Kd Fe T - Mg and $${\text{Kd}}_{{{\text{Mn}} {-} {\text{Mg}}}}$$ Kd Mn - Mg to olivine-hosted melt inclusions analysed by electron microprobe it is possible to correct simultaneously for post-entrapment crystallisation (or dissolution) and calculate melt Fe3+/∑Fe to a precision of ≤ 0.04.

Funder

Natural Environment Research Council

University of Oxford

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3