The mantle source of basalts from Reunion Island is not more oxidized than the MORB source mantle

Author:

Brounce MaryjoORCID,Stolper Edward,Eiler John

Abstract

AbstractGlasses quenched from relatively undegassed ocean island magmas erupted from volcanoes at Iceland, Hawaii, the Canary Islands, and Erebus have elevated Fe3+/∑Fe ratios compared to glasses quenched from mid-ocean ridge basalts. This has been ascribed to elevated fO2 of their mantle sources, plausibly due to subducted, oxidized near-surface-derived components in their mantle sources. The basaltic magmas from Reunion Island in the Indian ocean have Sr–Nd-Hf-Pb-Os isotopic compositions suggesting that their mantle sources contain little or no subducted near-surface materials and contain the C/FOZO/PREMA mantle component. To constrain the fO2 of the C/FOZO/PREMA mantle component and test the link between oxidized OIB and recycled surface-derived materials in their sources, we measured major and volatile element abundances and Fe3+/∑Fe ratios of naturally glassy, olivine-hosted melt inclusions from Piton de La Fournaise volcano, La Reunion. We conclude that the fO2 of the mantle source of these Reunion lavas is lower than of the mantle sources of primitive, undegassed magmas from Hawaii, Iceland, the Canary Islands, and Mt. Erebus, and indistinguishable from that of the Indian-ocean upper mantle. This finding is consistent with previous suggestions that the source of Reunion lavas (and the C/FOZO/PREMA mantle component) contains little or no recycled materials and with the suggestion that recycled oxidized materials contribute to the high fO2 of some other OIBs, especially those from incompatible-element-enriched mantle sources. Simple mixing models between oxidized melts of EM1 and HIMU components and relatively reduced melts of DMM can explain the isotopic compositions and Fe3+/∑Fe ratios of lavas from Hawaii, Iceland, the Canary Islands, and Mount Erebus; this model can be tested by study of additional OIB magmas, including those rich in the EM2 component.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3