Metasomatic ijolite, glimmerite, silicocarbonatite, and antiskarn formation: carbonatite and silicate phase equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–O2–CO2

Author:

Anenburg Michael,Walters Jesse B.ORCID

Abstract

AbstractSilicocarbonatites are carbonatite rocks containing > 20% silicate minerals. Their formation is not well understood due to low silica solubility in carbonatite melts and negligible amounts of silicate minerals on carbonatite melt cotectics at upper crustal conditions. We explore whether silicocarbonatites can be thought of as antiskarns: rocks formed by leaching of SiO2 from siliceous wall rocks by carbonatite melts, and its deposition as solid silicate minerals by reaction with chemical components already present in the carbonatite melt. Solid state thermodynamic modelling at 1–5 kbar and 500–800 °C predicts that calcite–dolomite–magnetite assemblages will transform to dolomite-free silicocarbonatites with an increase in silica contents. In sodic systems, the formation of aegirine and alkali amphiboles suppresses silica activity despite elevated silica contents. Therefore, dolomite remains stable, but Fe3+ is consumed, firstly from magnetite breakdown, and secondly by coupled Fe oxidation and reduction of CO2 to CO, CH4, and graphite, particularly at higher pressures. Despite a net increase in Fe3+/Fe2+, the system evolves to increasingly lower oxygen fugacity. In aluminous systems, nepheline indicates high temperatures whereas alkali feldspars form at lower temperatures. Modelling of potassic systems demonstrates stability of mostly phlogopite-rich biotites, leading to Fe2+ increase in all other carbonate and silicate phases. We find that perthites are expected in high pressures whereas two feldspars are more likely in lower pressures.Aspects of the clinopyroxene natural compositional trend (diopside to hedenbergite to aegirine) of carbonatite systems can be explained by silica contamination. Ferrous clinopyroxenes typically require low alumina and are predicted in potassic or low temperature sodic systems, primarily at mid to high pressures. Silica contamination permits the formation of silicocarbonatite-like assemblages in a way that is not limited by SiO2 solubility in carbonatite melts. Glimmerites and clinopyroxene-rich rocks (such as the ijolite series) that often occur around carbonatite rocks at the contact with silica-oversaturated wall rocks can be explained as the extreme end of silica contamination of carbonatite melts. Therefore, these clinopyroxenites and glimmerites can form solely via metasomatic processes without the presence of a silicate melt.

Funder

Australian Research Council

University of Bern

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3