Thermodynamic modelling of continental arc-adjacent magmatism: the Loicas Trough, N. Patagonia, Argentina

Author:

Traun Marie KatrineORCID,Waterton P.ORCID,Søager N.ORCID,Waight T. E.ORCID,Iannelli S. B.ORCID,Folguera A.ORCID,Litvak V. D.

Abstract

AbstractContinental arcs are associated with volcanism concentrated into two main belts—the main arc and back arc, often separated by fold and thrust belts. The Loicas Trough, Argentina, is a post-orogenic extensional feature that obliquely cuts the fold and thrust belts. The trough hosts large Pliocene–Holocene volcanic centres, including Domuyo and Tromen, that lie between the main arc and back arc and thus provide a rare window into this setting. We present major and trace element data for the Loicas Trough, which we combine with geochemical modelling using the Magma Chamber Simulator (MCS) to explore the origin and evolution of the volcanism. The lavas display a wide continuous range from alkaline basalts to subalkaline rhyolites. Trace elements reveal variable extents of arc enrichment (2 < Nb/U < 28), which correlate with proximity to the trench and differentiation indices. Our results and MCS models indicate that the Loicas Trough parental magmas formed from compositionally zoned mantle. Best-fit models indicate that the differentiation occurs at middle and upper crustal levels, in sharp contrast to lower crustal hot zones beneath main arcs. Assimilation of partial crustal melts drives compositional evolution and obscures source signatures. Pure or high fraction end-member partial crustal melts are also identified at Domuyo based on their low Ba (~ 250 ppm) and moderate Sc contents (~ 8 ppm). We find evidence of similar lavas in transtensional settings adjacent to continental arcs worldwide, which do not adhere to the main versus back arc volcanism binary. We suggest the term arc-adjacent magmatism, where compositions are mainly controlled by extensive assimilation and reworking in the middle to upper crust.

Funder

Carlsbergfondet

Geocenter Danmark

Copenhagen University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3