Zirconia Incorporated Aluminum Phosphate Molecular Sieves as Efficient Microporous Nano Catalysts for the Selective Dehydration of Methanol into Dimethyl Ether

Author:

Said Abd El‐Aziz AhmedORCID,Shaban Aya Ali,Goda Mohamed Nady

Abstract

AbstractAnnually, a growing demand was noted for replacing petroleum fuels with second-generation eco-friendly fuels like dimethyl ether (DME). Methanol dehydration into DME process has been considered as one of the potential pathways for the manufacture of a clean fuel. However, stable, and active catalyst is exceedingly requisite for generation of DME particularly at reasonably low temperature. In the current study, zirconia incorporated AlPO4 tridymite microporous molecular sieve catalysts were fabricated by a hydrothermal method in the presence of triethylamine (TEA) as a structure directing agent. The catalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and N2-sorption assessments. Catalysts’ acidity was estimated by decomposition of isopropanol, pyridine and dimethyl pyridine chemisorption, and pyridine-TPD. Results revealed that catalysts surfaces composed acid sites of Brønsted nature and of weak and medium strengths. Activity results showed that 1 wt% H2SO4 modified zirconia incorporated AlPO4-TRI catalyst calcined at 400 °C presented the best activity with a conversion of 89% and a 100% selectivity into DME at 250 °C. The significant catalytic activity is well-connected to the variation in BET-surface area, acidity, and activation energy of methanol dehydration. The catalysts offered long-term stability for 120 h and could be regenerated with almost the same activity and selectivity. Graphical Abstract

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3