Combustion Synthesis of Ag Nanoparticles and Their Performance During NaBH4 Hydrolysis

Author:

Abu-Zied Bahaa M.ORCID,Ali Tarek T.ORCID,Adly LamiaORCID

Abstract

AbstractDue to their tremendous industrial, environmental, and biological applications, research focusing on the synthesis and applications of silver nanoparticles (Ag NPs) has attracted increased interest from researchers over the past two decades. Their structural as well as textural properties can be easily tuned depending on the synthesis protocol utilized. Combustion synthesis has received increased attention as a one-pot route for the synthesis of a wide spectrum of nanomaterials. In this study, we present the results of synthesizing Ag NPs employing urea as a combustion fuel. The effect of the temperature of calcination on the formation and structural features of Ag NPs has been checked over the 400–700 °C temperature range. The characterization of the synthesized Ag NPs has been performed using XRD, SEM, TEM, and XPS techniques. It was found that Ag NPs, with a crystallite size of 40 nm, start to form at around 400 °C. Conducting the calcination at the 500–700 °C range results in the persistence of the obtained Ag NPs. Moreover, the obtained nanomaterials are characterized by a membrane-like morphology. The activity performance of the synthesized Ag NPs was examined for the hydrolysis of sodium borohydride (NaBH4) over a temperature range of 35–50 °C. Increasing the calcination temperature has led to a decrease in the activity of the Ag NPs during the NaBH4 hydrolysis. Graphical Abstract

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3