Unveiling the Structure Sensitivity for Direct Conversion of Syngas to C2-Oxygenates with a Multicomponent-Promoted Rh Catalyst

Author:

Sun Xiaohui,Jansma Harrie,Miyama Toshihito,Sanjeewa Aluthge Rasika Dasanayake,Shinmei Kenichi,Yagihashi Noritoshi,Nishiyama Haruka,Osadchii Dmitrii,van der Linden Bart,Makkee Michiel

Abstract

Abstract Mn and Li promoted Rh catalysts supported on SiO2 with a thin TiO2 layer were synthesized by stepwise incipient wetness impregnation approach. The thin TiO2 layer on the surface of SiO2 was proved to stabilize those small Rh nanoparticles and hinder their agglomeration. The reducibility of Rh on these catalysts depends on Rh particle size as well as the position of manganese oxide, and large Rh nanoparticles with MnO on Rh nanoparticles can be only reduced at an elevated temperature. Catalyst with large Rh particles exhibits a higher CO conversion and higher products selectivity towards long chain hydrocarbons and C2-oxygenates at the expense of decreasing methane formation than a similar catalyst with smaller Rh particles. This was attributed to the synergistic effect of Mn and Li promotion and molar ratio between Rh0 and Rhδ+ sites on the surface of Rh nanoparticles. Moreover, Rh nanoparticles on MnO are proved to be more efficient in promoting hydrogenation of acetaldehyde to ethanol than its counterpart with MnO on Rh nanoparticles. Finally, in order to target high C2-oxygenates selectivity, low reaction temperature together with a low H2/CO ratio in the feed is recommended. Graphic Abstract

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3