Abstract
AbstractRecently it was shown that, if the subtree and chain reduction rules have been applied exhaustively to two unrooted phylogenetic trees, the reduced trees will have at most $$15k-9$$
15
k
-
9
taxa where k is the TBR (Tree Bisection and Reconnection) distance between the two trees, and that this bound is tight. Here, we propose five new reduction rules and show that these further reduce the bound to $$11k-9$$
11
k
-
9
. The new rules combine the “unrooted generator” approach introduced in Kelk and Linz (SIAM J Discrete Math 33(3):1556–1574, 2019) with a careful analysis of agreement forests to identify (i) situations when chains of length 3 can be further shortened without reducing the TBR distance, and (ii) situations when small subtrees can be identified whose deletion is guaranteed to reduce the TBR distance by 1. To the best of our knowledge these are the first reduction rules that strictly enhance the reductive power of the subtree and chain reduction rules.
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献