Symmetric Set Coloring of Signed Graphs

Author:

Cappello Chiara,Steffen EckhardORCID

Abstract

AbstractThere are many concepts of signed graph coloring which are defined by assigning colors to the vertices of the graphs. These concepts usually differ in the number of self-inverse colors used. We introduce a unifying concept for this kind of coloring by assigning elements from symmetric sets to the vertices of the signed graphs. In the first part of the paper, we study colorings with elements from symmetric sets where the number of self-inverse elements is fixed. We prove a Brooks’-type theorem and upper bounds for the corresponding chromatic numbers in terms of the chromatic number of the underlying graph. These results are used in the second part where we introduce the symset-chromatic number $$\chi _\mathrm{sym}(G,\sigma )$$ χ sym ( G , σ ) of a signed graph $$(G,\sigma )$$ ( G , σ ) . We show that the symset-chromatic number gives the minimum partition of a signed graph into independent sets and non-bipartite antibalanced subgraphs. In particular, $$\chi _\mathrm{sym}(G,\sigma ) \le \chi (G)$$ χ sym ( G , σ ) χ ( G ) . In the final section we show that these colorings can also be formalized as DP-colorings.

Funder

Universität Paderborn

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3