Approximate Sampling of Graphs with Near-P-Stable Degree Intervals

Author:

Erdős Péter L.ORCID,Mezei Tamás RóbertORCID,Miklós IstvánORCID

Abstract

AbstractThe approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see ). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and Müller–Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently, Amanatidis and Kleer published a beautiful paper (), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper, we substantially extend their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centered at P-stable degree sequences.

Funder

National Research, Development and Innovation Office

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics

Reference11 articles.

1. G. Amanatidis and P. Kleer. Approximate Sampling and Counting of Graphs with Near-Regular Degree Intervals. In: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Ed. by P. Berenbrink, P. Bouyer, A. Dawar, and M. M. Kanté. Vol. 254. Leibniz International Proceedings in Informatics (LIPIcs). ISSN: 1868-8969. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 7:1–7:23. isbn: 978-3-95977-266-2. https://doi.org/10.4230/LIPIcs.STACS.2023.7.https://drops.dagstuhl.de/opus/volltexte/2023/17659 (visited on 10/13/2023).

2. T. Coolen, A. Annibale, and E. Roberts. Generating Random Networks and Graphs. Oxford University Press, May 26, 2017. 325 pp. isbn: 978-0-19-101981-4.

3. C. Cooper, M. Dyer, and C. Greenhill. Sampling Regular Graphs and a Peer-to-Peer Network. In: Combinatorics, Probability and Computing 16.4 (July 2007), pp. 557–593. issn: 1469-2163, 0963-5483. https://doi.org/10.1017/S0963548306007978.https://www.cambridge.org/core/journals/combinatoricsprobability-and -computing/article/sampling-regular-graphs-and-a-peertopeer-network/3C6DABD887139971589C69A0F0B52688 (visited on 03/14/2019).23

4. P. L. Erdös, C. Greenhill, T. R. Mezei, I. Miklós, D. Soltész, and L. Soukup. The mixing time of switch Markov chains: A unified approach. In: European Journal of Combinatorics 99 (Jan. 1, 2022), pp. 99–146. issn: 0195-6698. https://doi.org/10.1016/j.ejc.2021.103421.https://www.sciencedirect.com/science/article/pii/S0195669821001141 (visited on 12/08/2021).

5. C. Greenhill. The switch Markov chain for sampling irregular graphs (Extended Abstract). In: Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Proceedings. Society for Industrial and Applied Mathematics, Dec. 22, 2014, pp. 1564–1572. isbn: 978-1-61197-374-7. https://doi.org/10.1137/1.9781611973730.103.https://epubs.siam.org/doi/10.1137/1.9781611973730.103 (visited on 02/25/2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3