Extremal Values of the Sackin Tree Balance Index

Author:

Fischer MareikeORCID

Abstract

AbstractTree balance plays an important role in different research areas like theoretical computer science and mathematical phylogenetics. For example, it has long been known that under the Yule model, a pure birth process, imbalanced trees are more likely than balanced ones. Also, concerning ordered search trees, more balanced ones allow for more efficient data structuring than imbalanced ones. Therefore, different methods to measure the balance of trees were introduced. The Sackin index is one of the most frequently used measures for this purpose. In many contexts, statements about the minimal and maximal values of this index have been discussed, but formal proofs have only been provided for some of them, and only in the context of ordered binary (search) trees, not for general rooted trees. Moreover, while the number of trees with maximal Sackin index as well as the number of trees with minimal Sackin index when the number of leaves is a power of 2 are relatively easy to understand, the number of trees with minimal Sackin index for all other numbers of leaves has been completely unknown. In this manuscript, we extend the findings on trees with minimal and maximal Sackin indices from the literature on ordered trees and subsequently use our results to provide formulas to explicitly calculate the numbers of such trees. We also extend previous studies by analyzing the case when the underlying trees need not be binary. Finally, we use our results to contribute both to the phylogenetic as well as the computer scientific literature using the new findings on Sackin minimal and maximal trees to derive formulas to calculate the number of both minimal and maximal phylogenetic trees as well as minimal and maximal ordered trees both in the binary and non-binary settings. All our results have been implemented in the Mathematica package SackinMinimizer, which has been made publicly available.

Funder

European Social Funds

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3