Asymmetric List Sizes in Bipartite Graphs

Author:

Alon Noga,Cambie Stijn,Kang Ross J.ORCID

Abstract

AbstractGiven a bipartite graph with parts A and B having maximum degrees at most $$\Delta _A$$ Δ A and $$\Delta _B$$ Δ B , respectively, consider a list assignment such that every vertex in A or B is given a list of colours of size $$k_A$$ k A or $$k_B$$ k B , respectively. We prove some general sufficient conditions in terms of $$\Delta _A$$ Δ A , $$\Delta _B$$ Δ B , $$k_A$$ k A , $$k_B$$ k B to be guaranteed a proper colouring such that each vertex is coloured using only a colour from its list. These are asymptotically nearly sharp in the very asymmetric cases. We establish one sufficient condition in particular, where $$\Delta _A=\Delta _B=\Delta $$ Δ A = Δ B = Δ , $$k_A=\log \Delta $$ k A = log Δ and $$k_B=(1+o(1))\Delta /\log \Delta $$ k B = ( 1 + o ( 1 ) ) Δ / log Δ as $$\Delta \rightarrow \infty $$ Δ . This amounts to partial progress towards a conjecture from 1998 of Krivelevich and the first author. We also derive some necessary conditions through an intriguing connection between the complete case and the extremal size of approximate Steiner systems. We show that for complete bipartite graphs these conditions are asymptotically nearly sharp in a large part of the parameter space. This has provoked the following. In the setup above, we conjecture that a proper list colouring is always guaranteed if $$k_A \ge \Delta _A^\varepsilon $$ k A Δ A ε and $$k_B \ge \Delta _B^\varepsilon $$ k B Δ B ε for any $$\varepsilon >0$$ ε > 0 provided $$\Delta _A$$ Δ A and $$\Delta _B$$ Δ B are large enough; if $$k_A \ge C \log \Delta _B$$ k A C log Δ B and $$k_B \ge C \log \Delta _A$$ k B C log Δ A for some absolute constant $$C>1$$ C > 1 ; or if $$\Delta _A=\Delta _B = \Delta $$ Δ A = Δ B = Δ and $$ k_B \ge C (\Delta /\log \Delta )^{1/k_A}\log \Delta $$ k B C ( Δ / log Δ ) 1 / k A log Δ for some absolute constant $$C>0$$ C > 0 . These are asymmetric generalisations of the above-mentioned conjecture of Krivelevich and the first author, and if true are close to best possible. Our general sufficient conditions provide partial progress towards these conjectures.

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Precise Condition for Independent Transversals in Bipartite Covers;SIAM Journal on Discrete Mathematics;2024-05-06

2. Packing list‐colorings;Random Structures & Algorithms;2023-07-31

3. Coloring Bipartite Graphs with Semi-small List Size;Annals of Combinatorics;2023-01-29

4. A precise condition for independent transversals in bipartite covers;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

5. On the Subspace Choosability in Graphs;The Electronic Journal of Combinatorics;2022-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3