Abstract
Abstract
We discuss q-analogues of the classical congruence $$\left( {\begin{array}{c}ap\\ bp\end{array}}\right) \equiv \left( {\begin{array}{c}a\\ b\end{array}}\right) \pmod {p^3}$$apbp≡ab(modp3), for primes $$p>3$$p>3, as well as its generalisations. In particular, we prove related congruences for (q-analogues of) integral factorial ratios.
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics
Reference10 articles.
1. Adamczewski, B., Bell, J.P., Delaygue, É., Jouhet, F.: Congruences modulo cyclotomic polynomials and algebraic independence for $$q$$-series. Sém. Lothar. Combin. 78B, #A54 (2017)
2. Andrews, G.E.: $$q$$-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher. Discrete Math. 204(1-3), 15–25 (1999)
3. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)
4. Gorodetsky, O.: $$q$$-Congruences, with applications to supercongruences and the cyclic sieving phenomenon. Intern. J. Number Theory 15(9), 1919–1968 (2019)
5. Guo, V.J.W., Zudilin, W.: A $$q$$-microscope for supercongruences. Adv. Math. 346, 329–358 (2019)
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献