Abstract
AbstractPolymicrogyria (PMG) is a developmental cortical malformation characterized by an excess of small and frustrane gyration and abnormal cortical lamination. PMG frequently associates with seizures. The molecular pathomechanisms underlying PMG development are not yet understood. About 40 genes have been associated with PMG, and small copy number variations have also been described in selected patients. We recently provided evidence that epilepsy-associated structural brain lesions can be classified based on genomic DNA methylation patterns. Here, we analyzed 26 PMG patients employing array-based DNA methylation profiling on formalin-fixed paraffin-embedded material. A series of 62 well-characterized non-PMG cortical malformations (focal cortical dysplasia type 2a/b and hemimegalencephaly), temporal lobe epilepsy, and non-epilepsy autopsy controls was used as reference cohort. Unsupervised dimensionality reduction and hierarchical cluster analysis of DNA methylation profiles showed that PMG formed a distinct DNA methylation class. Copy number profiling from DNA methylation data identified a uniform duplication spanning the entire long arm of chromosome 1 in 7 out of 26 PMG patients, which was verified by additional fluorescence in situ hybridization analysis. In respective cases, about 50% of nuclei in the center of the PMG lesion were 1q triploid. No chromosomal imbalance was seen in adjacent, architecturally normal-appearing tissue indicating mosaicism. Clinically, PMG 1q patients presented with a unilateral frontal or hemispheric PMG without hemimegalencephaly, a severe form of intractable epilepsy with seizure onset in the first months of life, and severe developmental delay. Our results show that PMG can be classified among other structural brain lesions according to their DNA methylation profile. One subset of PMG with distinct clinical features exhibits a duplication of chromosomal arm 1q.
Funder
FP7 Health
H2020 European Research Council
Helmholtz-Gemeinschaft
Epilepsiefonds
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献