1. Alelyani, S.: On feature selection stability: a data perspective. Doctoral Dissertation. Arizona State University, Tempe, Arizona (2013)
2. Alexandro, D.: Aiming for success: evaluating statistical and machine learning methods to predict high school student performance and improve early warning systems. Doctoral Dissertation. University of Connecticut, Storrs, Connecticut (2018)
3. Almutiri, T., Saeed, F.: A hybrid feature selection method combining Gini index and support vector machine with recursive feature elimination for gene expression classification. Int. J. Data Min. Modell. Manag. 14(1), 41–62 (2022)
4. Aphinyanaphongs, Y., Fu, L.D., Li, Z., Peskin, E.R., Efstathiadis, E., Aliferis, C.F., Statnikov, A.: A comprehensive empirical comparison of modern supervised classification and feature selection methods for text categorization. J Associat. Inform. Sci. Technol. 65(10), 1964–1987 (2014)
5. Barabanova, I.V., Vychuzhanin, P., Nikitin, N.O.: Sensitivity analysis of the composite data-driven pipelines in the automated machine learning. Procedia Comp. Sci. 193, 484–493 (2021)