An iterative topic model filtering framework for short and noisy user-generated data: analyzing conspiracy theories on twitter

Author:

Kant GillianORCID,Wiebelt Levin,Weisser ChristophORCID,Kis-Katos KrisztinaORCID,Luber Mattias,Säfken BenjaminORCID

Abstract

AbstractConspiracy theories have seen a rise in popularity in recent years. Spreading quickly through social media, their disruptive effect can lead to a biased public view on policy decisions and events. We present a novel approach for LDA-pre-processing called Iterative Filtering to study such phenomena based on Twitter data. In combination with Hashtag Pooling as an additional pre-processing step, we are able to achieve a coherent framing of the discussion and topics of interest, despite of the inherent noisiness and sparseness of Twitter data. Our novel approach enables researchers to gain detailed insights into discourses of interest on Twitter, allowing them to identify tweets iteratively that are related to an investigated topic of interest. As an application, we study the dynamics of conspiracy-related topics on US Twitter during the last four months of 2020, which were dominated by the US-Presidential Elections and Covid-19. We monitor the public discourse in the USA with geo-spatial Twitter data to identify conspiracy-related contents by estimating Latent Dirichlet Allocation (LDA) Topic Models. We find that in this period, usual conspiracy-related topics played a marginal role in comparison with dominating topics, such as the US-Presidential Elections or the general discussions about Covid-19. The main conspiracy theories in this period were the ones linked to “Election Fraud” and the “Covid-19-hoax.” Conspiracy-related keywords tended to appear together with Trump-related words and words related to his presidential campaign.

Funder

Campus-Institut Data Science (CIDAS) Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3