Author:
Agosto Arianna,Cerchiello Paola,Giudici Paolo
Abstract
AbstractArtificial intelligence methods, based on machine learning models, are rapidly changing financial services, and credit lending in particular, complementing traditional bank lending with platform lending. While financial technologies improve user experience and possibly lower costs, they may increase risks and, in particular, the model risks that derive from inaccurate credit rating assessments. In this paper, we will show how to reduce such model risks, using a S.A.F.E. statistical learning model, which improves: Sustainability, taking environmental, social and governance factors into account; Accuracy, building a model which maximises predictive accuracy; Fairness, merging ESG scores from different data providers, improving their representativeness; Explainability, clarifying the relative contribution of each ESG score to predictive accuracy.
Funder
Università degli Studi di Pavia
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献