Deep learning-based approach for COVID-19 spread prediction

Author:

Cumbane Silvino Pedro,Gidófalvi Győző

Abstract

AbstractSpread prediction models are vital tools to help health authorities and governments fight against infectious diseases such as COVID-19. The availability of historical daily COVID-19 cases, in conjunction with other datasets such as temperature and humidity (which are believed to play a key role in the spread of the disease), has opened a window for researchers to investigate the potential of different techniques to model and thereby expand our understanding of the factors (e.g., interaction or exposure resulting from mobility) that govern the underlying dynamics of the spread. Traditionally, infectious diseases are modeled using compartmental models such as the SIR model. However, this model shortcoming is that it does not account for mobility, and the resulting mixing or interactions, which we conjecture are a key factor in the dynamics of the spread. Statistical analysis and deep learning-based approaches such as autoregressive integrated moving average (ARIMA), gated recurrent units, variational autoencoder, long short-term memory (LSTM), convolution LSTM, stacked LSTM, and bidirectional LSTM have been tested with COVID-19 historical data to predict the disease spread mainly in medium- and high-income countries with good COVID-19 testing capabilities. However, few studies have focused on low-income countries with low access to COVID-19 testing and, hence, highly biased historical datasets. In addition to this, the arguable best model (BiLSTM) has not been tested with an arguably good set of features (people mobility data, temperature, and relative humidity). Therefore, in this study, the multi-layer BiLSTM model is tested with mobility trend data from Google, temperature, and relative humidity to predict daily COVID-19 cases in low-income countries. The performance of the proposed multi-layer BiLSTM is evaluated by comparing its RMSE with the one from multi-layer LSTM (with the same settings as BiLSTM) in four developing countries namely Mozambique, Rwanda, Nepal, and Myanmar. The proposed multi-layer BiLSTM outperformed the multi-layer LSTM in all four countries. The proposed multi-layer BiLSTM was also evaluated by comparing its root mean-squared error (RMSE) with multi-layer LSTM models, ARIMA- and stacked LSTM-based models in eight countries, namely Italy, Turkey, Australia, Brazil, Canada, Egypt, Japan, and the UK. Finally, the proposed multi-layer BiLSTM model was evaluated at the city level by comparing its average relative error with the other four models, namely the LSTM-based model considering multi-layer architecture, Google Cloud Forecasting, the LSTM-based model with mobility data only, and the LSTM-based model with mobility, temperature, and relative humidity data for 7 periods (of 28 days each) in six highly populated regions in Japan, namely Tokyo, Aichi, Osaka, Hyogo, Kyoto, and Fukuoka. The proposed multi-layer BiLSTM model outperformed the multi-layer LSTM model and other previous models by up to 1.6 and 0.6 times in terms of RMSE and ARE, respectively. Therefore, the proposed model enables more accurate forecasting of COVID-19 cases and can support governments and health authorities in their decisions, mainly in developing countries with limited resources.

Funder

Styrelsen för Internationellt Utvecklingssamarbete

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., Hsueh, P.-R.: Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrobial Agents 55, 105924 (2020)

2. World Bank: The Global Economic Outlook During the COVID-19 Pandemic: A Changed World. (2020). https://www.worldbank.org/en/news/feature/2020/06/08/the-global-economic-outlook-during-the-COVID-19-pandemic-a-changed-world. Accessed 27 Oct 2020

3. World Health Organization: Attacks on health care in the context of COVID-19. (2020). https://www.who.int/news-room/feature-stories/detail/attacks-on-health-care-in-the-context-of-COVID-19. Accessed 27 Oct 2020

4. Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba Perez, Z., Cuomo-Dannenburg, G., et al. Report 9: impact of non-pharmaceutical interventions (npis) to reduce covid19 mortality and healthcare demand (2020)

5. Zhang, Y., Jiang, B., Yuan, J., Tao, Y.: The impact of social distancing and epicenter lockdown on the COVID-19 epidemic in mainland China: a data-driven SEIQR model study. MedRxiv (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3