Time series adversarial attacks: an investigation of smooth perturbations and defense approaches

Author:

Pialla Gautier,Ismail Fawaz Hassan,Devanne MaximeORCID,Weber Jonathan,Idoumghar Lhassane,Muller Pierre-Alain,Bergmeir Christoph,Schmidt Daniel F.,Webb Geoffrey I.,Forestier GermainORCID

Abstract

AbstractAdversarial attacks represent a threat to every deep neural network. They are particularly effective if they can perturb a given model while remaining undetectable. They have been initially introduced for image classifiers, and are well studied for this task. For time series, few attacks have yet been proposed. Most that have are adaptations of attacks previously proposed for image classifiers. Although these attacks are effective, they generate perturbations containing clearly discernible patterns such as sawtooth and spikes. Adversarial patterns are not perceptible on images, but the attacks proposed to date are readily perceptible in the case of time series. In order to generate stealthier adversarial attacks for time series, we propose a new attack that produces smoother perturbations. We introduced a function to measure the smoothness for time series. Using it, we find that smooth perturbations are harder to detect both visually, by the naked eye and by deep learning models. We also show two ways of protection against adversarial attacks: the first one by detecting the attacks using a deep model; the second one by using adversarial training to improve the robustness of a model against a specific attack, thus making it less vulnerable.

Funder

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3