Conventional displays of structures in data compared with interactive projection-based clustering (IPBC)

Author:

Thrun Michael C.ORCID,Pape Felix,Ultsch Alfred

Abstract

AbstractClustering is an important task in knowledge discovery with the goal to identify structures of similar data points in a dataset. Here, the focus lies on methods that use a human-in-the-loop, i.e., incorporate user decisions into the clustering process through 2D and 3D displays of the structures in the data. Some of these interactive approaches fall into the category of visual analytics and emphasize the power of such displays to identify the structures interactively in various types of datasets or to verify the results of clustering algorithms. This work presents a new method called interactive projection-based clustering (IPBC). IPBC is an open-source and parameter-free method using a human-in-the-loop for an interactive 2.5D display and identification of structures in data based on the user’s choice of a dimensionality reduction method. The IPBC approach is systematically compared with accessible visual analytics methods for the display and identification of cluster structures using twelve clustering benchmark datasets and one additional natural dataset. Qualitative comparison of 2D, 2.5D and 3D displays of structures and empirical evaluation of the identified cluster structures show that IPBC outperforms comparable methods. Additionally, IPBC assists in identifying structures previously unknown to domain experts in an application.

Funder

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Reference80 articles.

1. Cook, K.A., Thomas, J.J.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. PNNL, Richland (2005)

2. Keim, D.A., Mansmann, F., Thomas, J.: Visual analytics: how much visualization and how much analytics? ACM SIGKDD Explorations Newslett. 11, 5–8 (2010)

3. Chen, K., Liu, L.: VISTA: validating and refining clusters via visualization. Inf. Vis. 3, 257–270 (2004)

4. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)

5. Mirkin, B.G.: Clustering: A Data Recovery Approach. CRC Press, Boca Raton, FL (2005)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3