Author:
Hernández Nicolás,Muñoz Alberto,Martos Gabriel
Abstract
AbstractIn this paper, we propose a novel approach to address the problem of functional outlier detection. Our method leverages a low-dimensional and stable representation of functions using Reproducing Kernel Hilbert Spaces (RKHS). We define a depth measure based on density kernels that satisfy desirable properties. We also address the challenges associated with estimating the density kernel depth. Throughout a Monte Carlo simulation we assess the performance of our functional depth measure in the outlier detection task under different scenarios. To illustrate the effectiveness of our method, we showcase the proposed method in action studying outliers in mortality rate curves.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献